太阳能 LED 灯串控制器

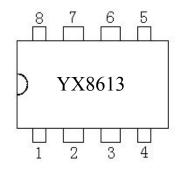
YX8613

■ 产品概况:

YX8613 是一款两功能太阳能灯串控制芯片,适用于 3 节 1.2V 充电电池或 1 节锂电池供电的太阳能灯串或灯具控制,两种功能为常亮和闪烁,通过 MOD 脚来选择。

太阳能 LED 灯串控制器 YX8613 是根据太阳能 LED 灯串工作特点专门研制的功能性灯串控制芯片,主要功能有自动光控、LED 功能驱动、太阳能充电、常亮和闪烁控制等。

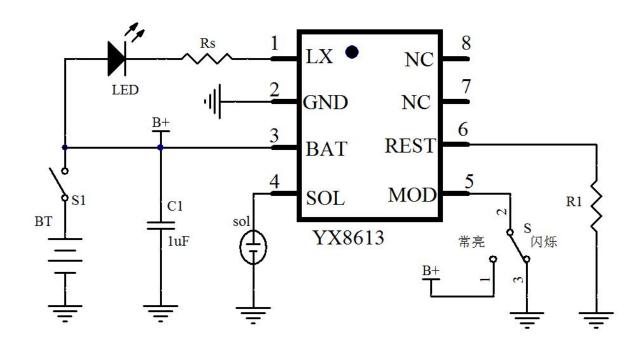
该控制器具有高转换效率: 90%以上(典型值),可以减少太阳能电池的功率要求;输出电流可调、闪灯频率可调、外围元件少等特点。


■ 特点:

- 高效率: 90%以上,可充分利用太阳能电池
- 输入电流可调,最大 200mA
- 低使能电压,确保灯具在外界光线足够暗的时候才开启
- 使能控制具有施密特性能,保证灯具亮暗转换时的稳定性
- 外围器件少,仅需2个: 2个电阻、1个电容

■ 应用范围:

- ▶ 3 节 1.2V 充电电池或 1 节锂电池供电的太阳能产品
- ▶ 1到 200颗 LED 并联灯串


■ DIP8、 SOP8 封装形式及管脚分布

管脚	功能	说明		
1	LX	LED 驱动输出		
2	GND	接地端		
3	BAT	电池正极		
4	SOL	太阳能正极		
5	MOD	模式控制		
6	REST	闪烁频率调节		
7	NC	空脚		
8	NC	空脚		

■ 应用原理图

典型应用

注: 以上电路中 S1 为电源开关, S 为常亮闪烁模式选择开关, 光控电压典型值为 0.72V

■ 电路调整

1、 模式选择

MOD 模式选择脚接高(B+)选择常亮模式,接低(GND)选择闪烁模式 MOD 选择闪烁模式时,R1 电阻可以调节闪烁频率。电阻 R1 增大,则闪烁频率减小;电阻 R1 减小则闪烁频率增大。R1=68K Ω 时,闪烁频率 f=1. Ω Hz;R1=36K Ω 时,闪烁频率 f=2. Ω Hz 闪烁频率范围: Ω 1. Ω 8- Ω 9 电阻取值范围: Ω 1. Ω 8- Ω 9 以

2、 电流大小调节

调节电阻 Rs 的大小可以 LED 电流大小,电阻增大电流变小,电阻减小电流变大,注:输入输出电流还与输入电压和 LED 的 VF 值,请按电流需求调节电阻 Rs 的大小,电阻值在零-几百欧调节

3、 电容选用

为了保证 YX8613 稳定工作一般要在 BAT 脚和 GND 脚之间加一个 1uF-100uF 的电容,这个电容 要尽可能的靠近这两个引脚,在用到非晶硅太阳能电池时请在 SOL 脚和 GND 脚这之间加一个 uF-10uF 的电容。MOD 引脚电容,开关频繁开关或 PCB 布线影响有时会出现闪灯频率加快现象 所以请在 MOD(第 5 脚) 加一个 1uF 电容来避免这种现象发生。

■ 电气参数

极限参数

符号	参数	数值	单位
Vsol(max)	太阳能端极限电压	5.5	V
Vbat(max)	输入电压	5	V
Imax	Lx 端极限电流	0.6	A
Topr	工作温度范围	-20 ~ +85	$^{\circ}\!\mathbb{C}$
Tstg	存贮温度	- 60 ∼ +125	$^{\circ}$ C
Is (max)	充电电流	200	MA
lin(max)	输入电流(放电电流)	200	MA
ESD	VESD 静电耐压值(人体模型)	2000	V

注:超过上表中规定的极限参数会导致器件永久性损坏。而工作在以上极限条件下可能会影产品的 靠可性。

推荐工作条件:

符号	参数	最小值	典型值	最大值	单位
Vsol	太阳能电池电压	4.5	5	5.5	V
Vbat	输入电压	0.9	1.2	1.5	V
Is	充电电流			150	MA
Iin	输入电流(放电电流)			150	MA

声明:

▲ 裕芯公司保留电路及其规格书的更改权,以便为客户提供更优秀的产品,规格若有更改,恕不另行通知,请在使用该产品前务必确认您所参考的信息是最新的。

▲ 裕芯公司一直致力于提高产品的质量和可靠性,然而,任何半导体产品在特定条件下都有一定的失效或发生故障的可能,客户有责任在使用裕芯产品进行产品研发时,严格按照对应规格书的要求使用裕芯产品,并在进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险造成人身伤害或财产损失等情况。如果因为客户不当使用裕芯产品而造成的人身伤害、财产损失等情况,裕芯公司不承担任何责任。

▲ 本产品主要应用于消费类电子产品中,如果客户将本产品应用于医疗、军事、航天等要求极高质量、极高可靠性的领域的产品中,其潜在失败风险所造成的人身伤害、财产损失等情况,裕芯公司不承担任何责任。

▲ 本规格书所包含的信息仅作为裕芯产品的应用指南,没有任何专利和知识产权的许可暗示,如果客户侵犯了第三方的专利和知识产权,裕芯公司不承任何责任。